翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kazhdan–Lusztig conjectures : ウィキペディア英語版
Kazhdan–Lusztig polynomial
In the mathematical field of representation theory, a Kazhdan–Lusztig polynomial ''Py,w''(''q'') is a member of a family of integral polynomials introduced by . They are indexed by pairs of elements ''y'', ''w'' of a Coxeter group ''W'', which can in particular be the Weyl group of a Lie group.
== Motivation and history==
In the spring of 1978 Kazhdan and Lusztig were studying Springer representations of the Weyl group of an algebraic group on l-adic cohomology groups related to unipotent conjugacy classes. They found a new construction of these representations over the complex numbers . The representation had two natural bases, and the transition matrix between these two bases is
essentially given by the Kazhdan–Lusztig polynomials. The actual Kazhdan–Lusztig construction of their polynomials is more elementary.
Kazhdan and Lusztig used this to construct a canonical basis in the Hecke algebra of the Coxeter group and its representations.
In their first paper Kazhdan and Lusztig mentioned that their polynomials were related to the failure of local Poincaré duality for Schubert varieties. In they reinterpreted this in terms of the intersection cohomology of Mark Goresky and Robert MacPherson, and gave another definition of such a basis in terms of the dimensions of certain intersection cohomology groups.
The two bases for the Springer representation reminded Kazhdan and Lusztig of the two bases for the Grothendieck group of certain infinite dimensional representations of semisimple Lie algebras, given by Verma modules and simple modules. This analogy, and the work of Jantzen and Joseph relating primitive ideals of enveloping algebras to representations of Weyl groups, led to the Kazhdan–Lusztig conjectures.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kazhdan–Lusztig polynomial」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.